16 research outputs found

    Predicting variation of DNA shape preferences in protein-DNA interaction in cancer cells with a new biophysical model

    Full text link
    DNA shape readout is an important mechanism of target site recognition by transcription factors, in addition to the sequence readout. Several models of transcription factor-DNA binding which consider DNA shape have been developed in recent years. We present a new biophysical model of protein-DNA interaction by considering the DNA shape features, which is based on a neighbour dinucleotide dependency model BayesPI2. The parameters of the new model are restricted to a subspace spanned by the 2-mer DNA shape features, which allowing a biophysical interpretation of the new parameters as position-dependent preferences towards certain values of the features. Using the new model, we explore the variation of DNA shape preferences in several transcription factors across cancer cell lines and cellular conditions. We find evidence of DNA shape variations at FOXA1 binding sites in MCF7 cells after treatment with steroids. The new model is useful for elucidating finer details of transcription factor-DNA interaction. It may be used to improve the prediction of cancer mutation effects in the future

    BayesPI-BAR2: A New Python Package for Predicting Functional Non-coding Mutations in Cancer Patient Cohorts

    Get PDF
    Most of somatic mutations in cancer occur outside of gene coding regions. These mutations may disrupt the gene regulation by affecting protein-DNA interaction. A study of these disruptions is important in understanding tumorigenesis. However, current computational tools process DNA sequence variants individually, when predicting the effect on protein-DNA binding. Thus, it is a daunting task to identify functional regulatory disturbances among thousands of mutations in a patient. Previously, we have reported and validated a pipeline for identifying functional non-coding somatic mutations in cancer patient cohorts, by integrating diverse information such as gene expression, spatial distribution of the mutations, and a biophysical model for estimating protein binding affinity. Here, we present a new user-friendly Python package BayesPI-BAR2 based on the proposed pipeline for integrative whole-genome sequence analysis. This may be the first prediction package that considers information from both multiple mutations and multiple patients. It is evaluated in follicular lymphoma and skin cancer patients, by focusing on sequence variants in gene promoter regions. BayesPI-BAR2 is a useful tool for predicting functional non-coding mutations in whole genome sequencing data: it allows identification of novel transcription factors (TFs) whose binding is altered by non-coding mutations in cancer. BayesPI-BAR2 program can analyze multiple datasets of genome-wide mutations at once and generate concise, easily interpretable reports for potentially affected gene regulatory sites. The package is freely available at http://folk.uio.no/junbaiw/BayesPI-BAR2/

    Réseaux de Pétri stochastiques comportant une seule place 1ere partie: régime stationnaire

    Get PDF
    Le formalisme des systèmes de réactions chimiques (de manière équivalente des réseaux de Pétri stochastiques) est très souvent utilisé en bilogie, en sûreté de fonctionnement etc. La série génératrice associée à la master-equation est solution d'une équation d'évolution du type équation de Schrödinger. On adopte ici l'approche classique par le calcul des fonctions propres en se concentrant, dans cette première partie, sur le calcul de la distribution stationnaire pour un système comportant une seule espèce chimique. On montre que, génériquement, la série génératrice stationnaire est une fonction holomorphe dans tout le plan complexe. Des exemples de calcul (symbolique-numérique) sur ordinateur sont développés

    Spatial modelling of community effects

    No full text
    Un embryon, initialement composé de cellules identiques, se transforme progressivement en une structure spatialement organisée de tissus distincts aux frontières clairement démarquées. Les interactions cellulaires jouent un rôle clé dans la formation de motifs, et l’effet de communauté est un exemple d’une telle interaction. Une population de cellules dans un embryon présente un effet de communauté quand elle forme une communauté de cellules ayant une identité commune obtenue grâce à l’échange de molécules de signalisation. Cet effet permet aux cellules de la communauté de maintenir un profil d’expression génétique commun.Dans ce travail, nous étudions le comportement de l’effet de communauté dans l’espace et étudions ses rôles dans d’autres processus de formation de motif, en utilisant la modélisation computationnelle:• Une méthode de réduction de modèle est développée pour l’analyse stochastique. Par cette méthode nous avons pu démontrer que le modèle de l’effet de communauté dans Xenopus est influencé par un bruit stochastique.• Nous montrons que l'effet de communauté doit finalement se propager dans l’ensemble de la population de cellules qui réagissent au morphogène.• Deux modèles montrant comment cette expansion peut être contrôlée sont présentés. 1) Si l’effet de communauté est augmenté d’un mécanisme de rétroaction négative, il forme un système qui s’auto-organise et forme une zone d’activation stable et localisée. 2) Quand un circuit simple de répression génétique est associé au circuit produisant l’effet de communauté, un motif d’expression de gène avec une frontière bien démarquée apparaît en réponse à un gradient de morphogène transitoire.A developing embryo, consisting initially of identical cells, transforms itself into a spatially organized structure made of distinct tissues with clear boundaries. Cell interaction plays a key role in pattern formation, and the community effect is an example of such an interaction. A population of cells in an embryo is said to exhibit a community effect when they form a cell community with a common identity by virtue of exchanging diffusible signalling molecules. This effect helps the cell community to maintain a common gene expression profile over an extended period of time.In this work, we study the behaviour of a community effect in space and investigate its roles in other pattern formation processes, using computational modelling:• A model reduction method is developed for stochastic analysis, and using it we have shown how the model of the community effect in Xenopus is influenced by stochastic noise.• Using a simple spatial community effect model, we show that the community effect spreads across the entire population of cells which respond to the morphogen.• Two models demonstrating how this expansion can be controlled are presented. 1) If the community effect is augmented with a negative feedback mechanism, it forms a reaction-diffusion system which self-organizes and forms a stable, localized area of activation. 2) When a simple cross-repression gene circuitry is combined with a community effect loop, a gene expression pattern with a well-demarcated boundary appears in response to a transient morphogen gradient. The pattern remains stable even after the gradient disappears, which shows that the gene network has the memory of morphogen dynamics

    Modélisation spatiale des effets de communauté

    No full text
    A developing embryo, consisting initially of identical cells, transforms itself into a spatially organized structure made of distinct tissues with clear boundaries. This process, known as pattern formation, is studied in the eld of developmental biology. Cell interaction plays a key role in pattern formation, and the community e ect is an example of such an interaction. A population of cells in an embryo is said to exhibit a community e ect when they form a cell community with a common identity by virtue of exchanging di usible signalling molecules (morphogens). This e ect helps the cell community to maintain a common gene expression pro le over an extended period of time, and to eventually di erentiate co-ordinately into a functional tissue, such as muscle. Self-organizing processes like community e ects are di cult to understand intuitively. Instead, a satisfactory description can be given in the form of a formal model. Several computational models of community e ects were given in the literature. However, the concept of space was not explicitly included in these models, making it di cult to understand how community e ects participate in pattern formation. In this work, we study the behaviour of a community e ect in space and investigate its roles in other pattern formation processes, using computational modelling. Main contributions of this thesis are the following: * A model reduction method is developed for stochastic analysis, and using it we have shown how the model of the community e ect in Xenopus is in uenced by stochastic noise. * Using the simplest possible spatial community e ect model, we show that the community e ect must eventually spread across the entire population of cells which respond to the morphogen. This is con rmed in a more detailed model. * Two models demonstrating how this expansion can be controlled are presented. First, if the community e ect is augmented with a negative feedback mechanism, it forms a reaction-di usion system which self-organizes and forms a stable, localized area of activation. Second, when a simple cross-repression gene circuitry is combined with a community e ect loop, a gene expression pattern with a well-demarcated boundary appears in response to a transient morphogen gradient. The pattern remains stable even after the gradient disappears, which shows that the gene network has the memory of morphogen dynamics.Un embryon, initialement composé de cellules identiques, se transforme progressivement en une structure spatialement organisée de tissus distincts aux frontières clairement démarquées. Ce processus de formation de motifs est étudié dans le domaine de la biologie du développement. Les interactions cellulaires jouent un rôle clé dans la formation de motifs, et l'effet de communauté est un exemple d'une telle interaction. Une population de cellules dans un embryon présente un effet de communauté quand elle forme une communauté de cellules ayant une identité commune obtenue grâce à l'échange de molécules de signalisation qui diffusent dans le milieu (i.e. des morphogènes). Cet effet permet aux cellules de la communauté de maintenir un profil d'expression génétique commun pendant une période prolongée, et pour se différencier finalement de manière coordonnée dans un tissu fonctionnel, comme le muscle. Les processus auto-organisés tels que l'effet de communauté sont difficiles à comprendre intuitivement. Une description satisfaisante peut être obtenue sous la forme d'un modèle formel. Quelques modèles computationnels des effets de la communauté ont été donnés dans la littérature. Cependant, la notion d'espace n'ayant pas été explicitement incluse dans ces modèles, il est difficile de comprendre comment l'effet de communauté participe à la formation de motifs. Dans ce travail, nous étudions le comportement de l'effet de communauté dans l'espace et étudions ses rôles dans d'autres processus de formation de motif, en utilisant la modélisation computationnelle. Les contributions principales de cette thèse sont les suivantes: * Une méthode de réduction de modèle est développée pour l'analyse stochastique. Par cette méthode nous avons pu démontrer que le modèle de l'effet de communauté dans Xenopus est influencé par un bruit stochastique. * En utilisant un modèle spatial simple d'effet de communauté, nous montrons que celui-ci doit finalement se propager dans l'ensemble de la population de cellules qui réagissent au morphogène. Cela est confirmé par un modèle plus détaillé. * Deux modèles montrant comment cette expansion peut être contrôlée sont présentés. Tout d'abord, si l'effet de communauté est augmenté d'un mécanisme de rétroaction négative, il forme un système de réaction-diffusion qui s'auto-organise et forme une zone d'activation stable et localisée. En second lieu, quand un circuit simple de repression génétique est associé au circuit produisant l'effet de communauté, un motif d'expression de gène avec une frontière bien démarquée apparaît en réponse à un gradient de morphogène transitoire. Le motif reste stable y compris après disparition du gradient, ce qui indique que le réseau de gènes garde en mémoire la dynamique du morphogène

    Modélisation spatiale des effets de communauté

    No full text
    A developing embryo, consisting initially of identical cells, transforms itself into a spatially organized structure made of distinct tissues with clear boundaries. This process, known as pattern formation, is studied in the eld of developmental biology. Cell interaction plays a key role in pattern formation, and the community e ect is an example of such an interaction. A population of cells in an embryo is said to exhibit a community e ect when they form a cell community with a common identity by virtue of exchanging di usible signalling molecules (morphogens). This e ect helps the cell community to maintain a common gene expression pro le over an extended period of time, and to eventually di erentiate co-ordinately into a functional tissue, such as muscle. Self-organizing processes like community e ects are di cult to understand intuitively. Instead, a satisfactory description can be given in the form of a formal model. Several computational models of community e ects were given in the literature. However, the concept of space was not explicitly included in these models, making it di cult to understand how community e ects participate in pattern formation. In this work, we study the behaviour of a community e ect in space and investigate its roles in other pattern formation processes, using computational modelling. Main contributions of this thesis are the following: * A model reduction method is developed for stochastic analysis, and using it we have shown how the model of the community e ect in Xenopus is in uenced by stochastic noise. * Using the simplest possible spatial community e ect model, we show that the community e ect must eventually spread across the entire population of cells which respond to the morphogen. This is con rmed in a more detailed model. * Two models demonstrating how this expansion can be controlled are presented. First, if the community e ect is augmented with a negative feedback mechanism, it forms a reaction-di usion system which self-organizes and forms a stable, localized area of activation. Second, when a simple cross-repression gene circuitry is combined with a community e ect loop, a gene expression pattern with a well-demarcated boundary appears in response to a transient morphogen gradient. The pattern remains stable even after the gradient disappears, which shows that the gene network has the memory of morphogen dynamics.Un embryon, initialement composé de cellules identiques, se transforme progressivement en une structure spatialement organisée de tissus distincts aux frontières clairement démarquées. Ce processus de formation de motifs est étudié dans le domaine de la biologie du développement. Les interactions cellulaires jouent un rôle clé dans la formation de motifs, et l'effet de communauté est un exemple d'une telle interaction. Une population de cellules dans un embryon présente un effet de communauté quand elle forme une communauté de cellules ayant une identité commune obtenue grâce à l'échange de molécules de signalisation qui diffusent dans le milieu (i.e. des morphogènes). Cet effet permet aux cellules de la communauté de maintenir un profil d'expression génétique commun pendant une période prolongée, et pour se différencier finalement de manière coordonnée dans un tissu fonctionnel, comme le muscle. Les processus auto-organisés tels que l'effet de communauté sont difficiles à comprendre intuitivement. Une description satisfaisante peut être obtenue sous la forme d'un modèle formel. Quelques modèles computationnels des effets de la communauté ont été donnés dans la littérature. Cependant, la notion d'espace n'ayant pas été explicitement incluse dans ces modèles, il est difficile de comprendre comment l'effet de communauté participe à la formation de motifs. Dans ce travail, nous étudions le comportement de l'effet de communauté dans l'espace et étudions ses rôles dans d'autres processus de formation de motif, en utilisant la modélisation computationnelle. Les contributions principales de cette thèse sont les suivantes: * Une méthode de réduction de modèle est développée pour l'analyse stochastique. Par cette méthode nous avons pu démontrer que le modèle de l'effet de communauté dans Xenopus est influencé par un bruit stochastique. * En utilisant un modèle spatial simple d'effet de communauté, nous montrons que celui-ci doit finalement se propager dans l'ensemble de la population de cellules qui réagissent au morphogène. Cela est confirmé par un modèle plus détaillé. * Deux modèles montrant comment cette expansion peut être contrôlée sont présentés. Tout d'abord, si l'effet de communauté est augmenté d'un mécanisme de rétroaction négative, il forme un système de réaction-diffusion qui s'auto-organise et forme une zone d'activation stable et localisée. En second lieu, quand un circuit simple de repression génétique est associé au circuit produisant l'effet de communauté, un motif d'expression de gène avec une frontière bien démarquée apparaît en réponse à un gradient de morphogène transitoire. Le motif reste stable y compris après disparition du gradient, ce qui indique que le réseau de gènes garde en mémoire la dynamique du morphogène

    Self-organized patterning by diffusible factors: roles of a community effect

    Get PDF
    International audienceFor decades, scientists have sought to elucidate self-organized patterning in development. One of the key questions in animal development is how a group of cells of one type keeps its identity and differentiates co-ordinately while surrounded by others. It has been shown that in certain cases, cells interact with their neighbours by diffusible factors in order to establish and maintain a common identity. This developmental process is called a community effect. In this work, we examine the dynamics of a community effect in space and investigate its roles in two other processes of self-organized patterning by diffusible factors: Turing's reaction-diffusion systems and embryonic induction by morphogens. Our major results are the following. First, we show that, starting from a one-dimensional model with the simplest feedback loop, a community effect spreads in an unlimited manner. Second, this unrestricted expansion of a community effect can be avoided by additional negative feedback. In Turing's reaction-diffusion system with a built-in community effect, if induction is localized, sustained activation also remains localized. Third, when a simple cross-repression gene circuitry is combined with a community effect loop, the system self-organizes. A gene expression pattern with a well-demarcated boundary appears in response to a transient morphogen gradient. Surprisingly, even when the morphogen distribution eventually becomes uniform, the system can maintain the pattern. The regulatory network thus confers memory of morphogen dynamics

    Integrative whole-genome sequence analysis reveals roles of regulatory mutations in BCL6 and BCL2 in follicular lymphoma

    No full text
    The contribution of mutations in regulatory regions to tumorigenesis has been the subject of many recent studies. We propose a new framework for integrative analysis of genome-wide sequencing data by considering diverse genetic information. This approach is applied to study follicular lymphoma (FL), a disease for which little is known about the contribution of regulatory gene mutations. Results from a test FL cohort revealed three novel highly recurrent regulatory mutation blocks near important genes implicated in FL, BCL6 and BCL2. Similar findings were detected in a validation FL cohort. We also found transcription factors (TF) whose binding may be disturbed by these mutations in FL: disruption of FOX TF family near the BCL6 promoter may result in reduced BCL6 expression, which then increases BCL2 expression over that caused by BCL2 gene translocation. Knockdown experiments of two TF hits (FOXD2 or FOXD3) were performed in human B lymphocytes verifying that they modulate BCL6/BCL2 according to the computationally predicted effects of the SNVs on TF binding. Overall, our proposed integrative analysis facilitates non-coding driver identification and the new findings may enhance the understanding of FL
    corecore